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3 Département Matière Condensée, Institut Néel/CNRS—UJF, Matériaux et Fonctions,
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Abstract
Transparent gallium orthophosphate single crystals with the α-quartz-type structure, α-GaPO4,
were obtained using the high temperature solution growth technique in a Li2O–3MoO3 flux. A
first measurement of several elastic constants Ci jkl of the millimeter-size α-GaPO4 piezoelectric
single crystals obtained is reported. The elastic constants were computed from the resonance
frequencies of the thickness vibration modes measured, at room temperature, in plates polished
in these crystals. These resonances were excited either by an electric field normal to the plates
(conventional thickness excitation) or by a field parallel to the surface of the plates (lateral field
excitation). As usual, the elastic constants were extracted using the formulae given by the
corresponding one-dimensional theories of thickness vibration of piezoelectric plates. The
measured elastic constants Ci jkl of the flux-grown α-GaPO4 were generally found to be higher
than those measured with α-GaPO4 crystals grown using the hydrothermal technique. This is
most probably related to the extremely weak concentration of OH impurities existing in the
crystals obtained using this flux-growth method.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The α-quartz-type modification of gallium orthophosphate
material (GaPO4, space groups P3221 or P3121 [1]) has
been intensively studied since the 1980s due to its higher
piezoelectric coupling coefficient (k) and its larger thermal
stability domain compared with α-quartz (α-SiO2) [2–5]. At
atmospheric pressure, the well-known α-quartz/β-quartz phase
transition which occurs at 573 ◦C for SiO2, is not observed
for GaPO4. For this material, the direct transformation,
upon heating, to a non-piezoelectric phase (β-cristobalite,
space group F-43m [6]) appears only at about 950 ◦C [7, 8].
This expands greatly the useful temperature range for the
applications of α-GaPO4 as compared to α-quartz. However,
this phase transition does not permit us to obtain α-GaPO4

4 Author to whom any correspondence should be addressed.

crystals directly from the melt (1670 ◦C [9]) but its temperature
is sufficiently high to allow a variety of growth methods.

Centimeter-size α-GaPO4 single crystals are commonly
prepared by hydrothermal methods from acid aqueous
solutions in the temperature range of 150–310 ◦C and pressures
from 2 to 150 bars [10, 11]. However, these hydrothermally
grown α-GaPO4 crystals contain most often hydroxyl groups
(OH) which affect their piezoelectric properties and may limit
their use at high temperature [12–14]. Equally, in the most
satisfactory hydrothermal growth conditions presently known,
the growth rate along the Y -direction is small, so that large
crystals cannot be obtained by successive growth of nucleation
but should be prepared using epitaxial growth of α-GaPO4 on
large seeds of α-quartz analogs [13].

In order to overcome these difficulties, we have developed
in our laboratory the high temperature solution growth
technique, also known as the flux-growth technique [15]. The
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main feature of this high temperature growth method is to use
mineral fluxes as solvents for growing GaPO4 single crystals
at temperatures below their allotropic transformation. The
interesting effects of both the anhydrous solvent and the high
temperature used are to avoid water molecule incorporation
(and hydroxyl group impurities) and to improve the crystal
growth rates.

Colorless and transparent α-GaPO4 single crystals
were obtained by spontaneous nucleation using the slow
cooling method in X2O–3MoO3 fluxes (X = Li, K) [16, 17].
From infrared measurements in the transmission mode, the
millimeter-size flux-grown α-GaPO4 crystals have been found,
as expected, practically free from OH-radicals. Furthermore,
these as-grown crystals present a totally reversible α-quartz �
β-cristobalite phase transition from the first thermal cycle
(10 ◦C min−1) and without any annealing process [17]. To
our knowledge, this phenomenon has never been reported for
hydrothermally grown α-GaPO4 crystals.

After structural and thermal characterizations [16, 17],
a first determination of the elastic constants Ci jkl , at room
temperature, was undertaken on plates obtained from as-grown
α-GaPO4 single crystals spontaneously crystallized by slowly
cooling a Li2O–3MoO3 flux saturated with GaPO4.

2. Theory

The application of a high frequency electric field either normal
to a plate of a piezoelectric material or situated in the plane of
this plate can excite piezoelectric thickness modes of the plate
whose resonance and anti-resonance frequencies are more or
less simply related to the piezoelectric, elastic and dielectric
constants of the material [18, 19].

In the following, we recall the main results of the
one-dimensional theory of the thickness modes of infinite
piezoelectric plates (of thickness h) excited by an electric field
normal to the plate using the formalism initially proposed
by Glowinski [20]. Due to the fact that practical thickness
vibration modes of finite plate are very similar to theoretical
one-dimensional modes, this theory is the one most often
used to extract constants from measurements of resonance
frequencies (or from measurements of propagation delay).
In this paper, we consider the case of a piezoelectric plate
totally coated with thin metal layers (electrodes) of negligible
mass. This theory is also relevant in the case of the ‘air gap’
measurements made with a negligible gap between the external
electrodes and the plate.

For a piezoelectric material, the linear constitutive
equations of the piezoelectric field (equivalent to the
stress–strain relation of elastic materials and, thus, to the
generalization of the Hooke’s Law for piezoelectric material)
are:

Ti j = CE
i jkl Skl − eki j Ek (1)

D j = e jkl Skl + εS
jk Ek (2)

Skl = 1

2

(
∂ul

∂xk
+ ∂uk

∂xl

)
(i, j, k, l = 1, 2, 3) (3)

where Ti j = σi j is the stress tensor, Skl is the infinitesimal
strain tensor and �u is the displacement from equilibrium

position �x = (x1, x2, x3), tCE
i jkl is the elastic stiffness constant

at constant electric field Ek (Ek = − ∂φ

∂xk
where φ is the

electric potential), eki j is the piezoelectric stress constant, εS
jk

constitutes the dielectric tensor at constant strain and D j is
the electric displacement field. In these constitutive relations
and in the following, the Einstein summation convention over
repeated index is applied. The symmetries of the tensors allow
a simplified equivalent form of relations (1) and (2):

Ti j = CE
i jkl

∂ul

∂xk
+ eki j

∂φ

∂xk
(1′)

Dl = elmn
∂un

∂xm
− εS

lk

∂φ

∂xk
. (2′)

The electrical displacement obeys Maxwell’s equation
(without free charges in the piezoelectric material and in the
quasi-static approximation)

∂ D j

∂x j
= 0, (4)

which, using (2′), can be written as

e jkl
∂2ul

∂x j∂xk
− εS

jk

∂2φ

∂x j∂xk
= 0, (5)

and the stress equation of motion is given by

ρ
∂2ui

∂ t2
= ∂Ti j

∂x j
= CE

i jkl

∂2ul

∂x j∂xk
+ eki j

∂2φ

∂x j∂xk
. (6)

We consider the propagation of electromechanical plane
waves in the direction defined by the unit normal to the plate
�n(n1, n2, n3):

�u = �u0 exp( j �K · �r + jωt)


 = 
0 exp( j �K · �r + jωt)

where �K = �nK is the wavevector, K is the wavenumber and
�K · �r = K · n j x j .

We have also:

∂2ui

∂ t2
= −ω2ui ,

∂2ul

∂x j∂xk
= −n j nk K 2ul,

∂2φ

∂x j∂xk
= −n j nk K 2φ

and by replacing in relations (5) and (6), we obtain:

ρ
ω2

K 2
ui = �il ul + γiφ

γlul − εφ = 0

with �i j = CE
i jkl n j nk , γi = eki j n j nk , and ε = εS

jkn j nk .
Eliminating the electric potential between the two

equations, we obtain the piezoelectric Christoffel equation:

ρ
ω2

K 2
ui =

(
�il + γiγl

ε

)
ul . (7)
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Equation (7) is an eigenvalue, eigenvector equation of
dimension 3 which has, usually, three distinct solutions (three
eigenvalues, denoted C̄α = ρω2

(K α)2 and the three corresponding

eigenvectors ( �Uα α = 1, 2, 3). These solutions correspond to
the longitudinal (L), fast transverse (FT), and slow transverse
(ST) electro-acoustic waves propagating normally to the plane
plate, the eigenvalues being the three ‘effective’ or ‘stiffened’
elastic constants related to the three modes. The three unit
eigenvectors �Uα

0 are the three polarizations of the modes. As
the Christoffel matrix is symmetrical, the three eigenmodes
have mutually orthogonal displacements. The phase velocity
of these acoustic waves is by definition:

να = ω

K α
=

√
C̄α

ρ
.

The forced modes (here forced by the normal field created
by an electrical potential imposed between the two faces of
the plate) are found to be the linear combination of plane
waves propagating in the +�n and −�n directions that verify the
boundary conditions:

Ti j · n j (±h/2) = 0


(±h/2) = ±V0/2

where h is the thickness of the plate. After some calculations,
we obtain for each eigenmode:

�Uα(�r) = �Uα
0 ·

[
− V0

h
· γ α

K α · C̄α

]
sin(K α �n · �r)

cos(K α · h/2)


α(�r) = 1

ε
γi · Uα

i .

The total field being:

�U =
α=3∑
α=1

�Uα,


 =
∑

α


α + 
0 =
∑

α

1

ε
γ α

i Uα
i0 + V0

h
�n · �r


α being the potential induced by the displacement �Uα . The
total potential also includes the quasi-electrostatic potential 
0

externally imposed. In these relations, we have θα = K αh
2 =

ω·h
2·υα , γ α = γi · Uα

0,i , and kα = γ α√
ε·C̄α

; where kα is the
electromechanical coupling coefficient of the mode α. Using
these results, it is possible to find the current density in the
device at any frequency (from J0 = I/S = − ∂(Di ·ni )

∂ t and
equation (2′)) and to calculate the electrical impedance Z(ω)

of a one-dimensional resonator having a finite surface S,

Z(ω) = 


J0 · S
= 1

iωC0

[
1 −

∑
α

(kα)2 tan θα

θα

]
(8)

where C0 is the capacitance for a surface S and kα =
√

(γ α)2

ε·C̄α
is

the coupling coefficient.

The anti-resonance frequencies, which are also the open-
circuit eigenfrequencies, are solutions of 1/Z(ω) = 0 which
correspond to:

θα = π f α
a h

vα
= (2p + 1)π/2

and so to,

f α
a = (2p + 1)

2h
vα = (2p + 1)

2h

√
C̄α

ρ
(9)

where ν is the velocity of the propagation of the acoustic wave
and h is the plate thickness.

The resonance frequencies are solutions of Z(ω) = 0.
Generally, the resonance frequencies are separated enough
so that they are solutions of simplified equations obtained
considering only one term of the sum in (8),

(kα)2tan

{
π f (n)

r (h)

vα

}
= π · f (n)

r

vα
(h). (10)

Equation (10) gives an exact solution when only one
mode is electrically excited. From these expressions, we
observe that the velocities να can be deduced from the
measurements of the resonance frequencies fr and/or of the
anti-resonance frequencies fa of the corresponding vibration
modes (longitudinal, fast and slow transverses modes) of
a plate. In each case, an explicit expression of C̄α as
a function of the material constants (C, e, ε) and of the
plate orientation (n1, n2, n3) can be obtained and numerical
techniques exist to extract kα and C̄α from the measurements
of the resonance and/or anti-resonance frequencies of several
overtones (characterized by p in (9)) of the same mode, so that,
if a sufficient number of experiments is made with plates of
different orientations, it is possible to determine all the elastic
and piezoelectric constants of a given material.

A theory relatively similar to that recalled above does
exist also for the case where a field parallel to the face of a
plane plate is used to excite the thickness modes (lateral field
excitation) [19]. It appears that the same Christoffel equation
remains valid in this case. However, the electrical boundary
condition is now quite different so that the expressions of the
impedance and of the coupling coefficient are different.

We will simply recall here that, for such modes,
the resonance frequencies are equal to the anti-resonance
frequencies obtained with a field directed in the thickness
direction and, thus, are given exactly by the relation (9).
So the velocity and the constants can also be derived from
the resonance frequencies measured with a lateral field
excitation. These resonance frequencies are, in principle,
independent of the direction of the field. However, in
order to maximize the ‘strength’ of the resonance and so to
minimize the measurement errors, the field should preferably
be applied in the direction giving the maximal value of the
electromechanical coupling coefficient [11].

Table 1 gives the mathematical expressions of the velocity,
νi (i = 1, 2, 3), of the different plane waves which
can propagate into the X - or Y -plate using the previous
one-dimensional model of an infinite plate with massless
electrodes.
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Table 1. Mathematical expressions of the wave velocity in the case of an X- and Y -oriented GaPO4 plates. (TE = normal field (thickness
excitation), LE = lateral field excitation).

Plate type Orientation
Wave propagation,
excitation Wave velocity

X-plate ⊥O X Longitudinal (TE) V 2
1 =

(
CE

11 + e2
11

εS
11

)/
ρ

Quasi-transverse (fast)
LE

V 2
2 = (CE

66 + CE
44 +

√
(CE

66 − CE
44)

2 + 4CE
14

2
)/2ρ

Quasi-transverse (slow)
LE

V 2
3 = (CE

66 + CE
44 −

√
(CE

66 − CE
44)

2 + 4CE
14

2
)/2ρ

Y -plate ⊥OY Quasi-longitudinal
LE

V 2
1 = (CE

11 + CE
44 +

√
(CE

11 − CE
44)

2 + 4CE
14

2
)/2ρ

Quasi-transverse (fast)
LE

V 2
2 = (CE

11 + CE
44 −

√
(CE

11 − CE
44)

2 + 4CE
14

2
)/2ρ

Transverse (slow)
TE

V 2
3 =

(
CE

66 + e2
11

εS
11

)/
ρ

3. Experimental procedure

The crystal growth experiment was carried out in air in a
single temperature zone, SiC resistance heater furnace with an
Eurotherm temperature controller. The syntheses of both the
α-GaPO4 phase and the Li2O–3MoO3 flux powders, which are
not commercially available, have already been reported in [17].

85 wt% of the Li2O–3MoO3 flux was thoroughly mixed
with 15 wt% of α-GaPO4 powder in an agate mortar. The α-
GaPO4-flux mixture was put in a platinum crucible covered
with a lid, heated from room temperature to 950 ◦C at a ramp
rate of 100 ◦C h−1 and held at this temperature for 5 h for
homogenization. The melted charge was then cooled down
with a cooling rate of 0.1 ◦C h−1 from 950 to 750 ◦C and with a
cooling rate of 2 ◦C h−1 from 750 to 600 ◦C. After, the charge
was cooled to room temperature at 200 ◦C h−1.

The crystals were separated from the growth solution by
dissolving the residual flux in warm water at 30–45 ◦C. In
this context, all secondary materials such as polyphosphate,
if formed, were dissolved in water. The resultant product
was sieved in order to collect only bulk materials. As-grown
α-GaPO4 crystals were carefully washed in distilled water
with the help of an ultrasonic cleaner and dried at 80 ◦C. A
four-circle x-ray diffraction spectrometer (Oxford diffraction)
using Mo Kα radiation was used to confirm the nature of the
crystallized phase.

Numerous single crystals of millimeter-size were obtained
from the flux-growth experiment described above. The biggest
as-grown α-GaPO4 single crystal was 8 × 3 × 3 mm3,
figure 1(a). A Y -oriented parallel plate with a thickness
of 1.220 mm was prepared from this crystal by polishing,
figure 1(b). An X -oriented parallel plate with a thickness of
0.617 mm was polished from another as-grown single crystal
of 4 mm length and 2.5 mm width, figure 2. The orientations of
these plates were achieved to a precision of 0.06◦ with a Laue
camera. The Laue diffraction patterns have not revealed any
sub-grain structure or twins.

The values of the elastic constants Ci jkl of the flux-
grown α-GaPO4 single crystals were derived from the

(a)

(b)

Figure 1. As-grown α-GaPO4 single crystal (a), Y -oriented plate
obtained by polishing (b). The smallest division of the grid is 1 mm.

4
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Figure 2. X-oriented α-GaPO4 plate. The smallest division of the
grid is 1 mm.

measurements of their electrical resonance spectra registered at
room temperature with network analyzers in the 0.9–10 MHz
frequency range.

For the modes excited by a thickness field, the resonance
and some anti-resonance frequencies were directly obtained
from air gap measurements of the Y - and X - GaPO4

plates. The experimental set-up mostly used has already been
described in [21]. In most cases, electrodes totally covering
the plate and a very small variable gap (few microns) between
the electrodes and the surface of the GaPO4 plate were used. It
was previously verified (by varying the gap and extrapolating
the resonance frequencies to a zero gap) that this small gap
has a negligible effect on the constant extracted compared with
other uncertainties affecting the measurements (principally the
precision of the thickness measurements and possibly the effect
of the finite dimensions of the plates and, in some cases, the
degeneration of the thickness mode, etc).

Several experiments were made using a simpler set-up
in which the sample was placed between a totally metalized
plane silica piece and a thin plane metal plate larger than the
sample. In this case, the gap was also negligible. The contact
of the upper electrode has sometimes some how degraded
the Q factor of the resonance and the reproducibility of the
measurements, but on the whole, the resonance frequencies
measured were not significantly different to those obtained
with the first set-up. One measurement was made using
deposited electrodes smaller than the Y -plate. In this case,
corrections were used to account for the effect of the mass of
the plating and of the finite dimension of the electrodes on
the resonance frequency. As the anti-resonance frequencies
are very sensitive to the parasitic capacitances, they were
most often deduced numerically from the measurements of the
resonance frequencies of one or several overtones (application
of relation (10)).

Most of the experiments using lateral field were made
with a very simple set-up (by simply placing the plates, in
the appropriate direction, on a pair of rectangular electrodes
separated by a gap and deposited on a very flat piece of

Table 2. Values of the elastic constants presented in this work and
compared to values obtained from hydrothermally grown α-GaPO4

single crystals.

Elastic constants
(109 N m−2) This work Ref. [23] Ref. [24]

C11 64.01 ± 1.92 66.35 ± 0.02 66.58 ± 0.37
C14 5.52 ± 0.17 4.20 ± 0.08 3.91 ± 0.33
C44 39.39 ± 1.17 37.80 ± 0.01 37.66 ± 0.27
C66 25.25 ± 0.75 22.35 ± 0.01 22.38 ± 0.32

fused silica). Some experiments were made using electrodes
on both faces of the plate. Although they produce a more
uniform lateral field inside the sample, practically no difference
was observed concerning the resonance frequencies. In fact,
the accuracy seems to be quite good and limited by the
same factors as indicated above for the transverse modes. It
is degraded for the extensional modes due to the frequent
decomposition of these modes into several others (coupling to
other plate modes at the edge of the plate).

In table 2 are given the resulting elastic constants at
room temperature. For the calculation of these constants, the
dielectric permittivity at constant strain, εS

11, was measured at
high frequency and at room temperature. Its value, 5.83, is very
close to the one reported in [22]. The value of the piezoelectric
coefficient e11, 0.21 C m−2, was taken from [23]. The density,
at 20 ◦C, calculated from our x-ray diffraction measurement is
equal to 3571.4 kg m−3 in perfect agreement with [24].

4. Discussion

To determine all the elastic and piezoelectric constants of a
crystal, it is necessary to use plates having a sufficient number
of different orientations in order to have a sufficient number of
relations to extract the constants.

The precision of the values of the constants is directly
related to the accuracy of the frequency measurements and
of the thickness measurements and it depends also on the
concordance between the actual vibration mode of the real
device and the model used to extract the constants. Here,
the theoretical analysis is carried out under a one-dimensional
assumption for the mode shapes of the thickness extension
and of the thickness shear modes. This implies that the
piezoelectric plate is sufficiently large (ratio of the lateral
dimensions to the thickness) so that the mode is sufficiently
close to a plane wave. In fact, this assumption is generally
considered as good when the lateral dimensions are much
larger than the thickness (a factor of about 10–20, depending
on the material, is usually sufficient when the plate is totally
covered by the electrodes). When the lateral dimensions of
the plate (or the electrodes) are smaller, the lateral boundary
conditions could have a larger influence on the vibration mode
shape and thus, finally, a non-negligible influence on the
value of the resonance frequency and on the accuracy of the
constants. However, it should be recalled that the influence
on the eigenfrequencies is theoretically much lower than that
on the mode shapes. In several cases (plane or plano-convex
resonators of simple shape, covered by electrodes smaller than

5
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the plate), suitable three-dimensional theories exist that permit
us to determine an accurate correction to the result obtained
with the one-dimensional theory even if the lateral dimension
of the plate is not very large compared to its thickness.

For this work, only two plates of simple orientations (X -
and Y -plates) have been obtained from our spontaneously
crystallized materials. The average small size of the as-
grown GaPO4 single crystals (typically 4–5 mm in the lateral
direction) has not allowed us to get the rotated orientations
which are necessary for the measurements of the whole
elastic constants. In this context, only four out of six
independent elastic constants were obtained from the two
plates available. The four calculated elastic constants, derived
from the resonances of both the X - and the Y -plates, were
C11, C66, C44, and C14 (C12 can be deduced from C11 and
C66). Their values, presented in table 2 with the uncertainty
associated with them, are compared to the values extracted
from measurements made on hydrothermally grown α-GaPO4

crystals using. respectively. the Brillouin scattering [24]
and the pulse-echo technique [23]. The elastic constants
found by these authors are in reasonable agreement (see
table 2) although an evolution of the elastic properties of the
material has most probably occurred with the progress of the
hydrothermal growth methods.

Compared to these published values, the experimental
elastic constants obtained for our samples present some slight
differences, table 2. The values of the shear constants C66

and C44 are higher than the ones registered for hydrothermally
grown α-GaPO4. On the other hand, the value of the
longitudinal constant C11 appears to be lower than (or nearly
equal to) the ones measured on hydrothermal crystals.

The changes in the values of the elastic constants with
the growth technique are generally associated with some
slight modifications of the α-GaPO4 lattice by intrinsic point
defects, impurities, dislocations, etc. It is well known
that the propagation velocity into a medium is governed
by the atomic bond strength and that each structural defect
produces some distortions of the lattice which may modify its
rigidity. It is well demonstrated that hydrothermally grown α-
GaPO4 single crystals most often contain hydroxyl radicals
which enter the lattice during crystallization via the growth
medium [12–14]. These OH groups, and sometimes water
molecule inclusions, reduce the elastic constants and increase
the acoustic dissipation of the material [12–14].

The Brillouin experiments described in [24] were
undertaken on hydrothermally grown α-GaPO4 samples with
OH impurity concentrations between 200 and 400 ppm. The
pulse-echo study was realized on α-GaPO4 crystals with an
average OH concentration of 50 ppm [23] deduced from
infrared (IR) spectroscopy. A typical transmission infrared
spectrum. measured at room temperature. of a hydrothermally
grown α-GaPO4 presents a large absorption band between
3700 and 3000 cm−1 (O–H infrared region) superposed to three
well-separated peaks at 3167, 3290, and 3400 cm−1 [23]. The
literature [25, 26] attributes the peaks at 3167 and 3290 cm−1

to third order lattice vibrations and the large band to the
presence of OH groups. Always from the literature, a weak
part of the absorption of the third peak (3400 cm−1) is intrinsic

to the GaPO4 lattice vibrations and the other part to O–H
stretching vibrations [25, 26]. This is why the authors [25]
have proposed to calculate the extinction coefficient, α, at
3400 cm−1, from the expression α = 1/d[log(T3800/T3400)] −
α∗, where d represents the sample thickness in cm, T the % IR
transmission at, respectively, 3800 and 3400 cm−1, and α∗ is an
intrinsic contribution resulting from lattice vibrations of pure
GaPO4. It has also been proposed that the OH concentration
could be extrapolated from the determination of the extinction
coefficient using the simple relationship [OH(ppm)] = 65α.

A transmission infrared study made at room temperature
on some of our flux-grown α-GaPO4 crystals is reported
in [17]. The collected infrared spectra did not contain the large
absorption band from 3700 to 3000 cm−1 that is characteristic
of a noticeable OH content. In our results only the three
peaks at 3167, 3290, and 3400 cm−1 were registered in this
wavenumber domain. As already mentioned, the flux-grown
α-GaPO4 crystals were obtained from slow cooling from
950 to 600 ◦C. Considering this temperature range and the
nature of the flux, the incorporation of O–H radicals during
the crystallization is very improbable. In this context, the
presence of the very small 3400 cm−1 vibration peak could
hardly be attributed to O–H stretching vibrations but quite
certainly to intrinsic lattice vibrations. The high temperature
flux-growth method seems to be a performing technique to
produce transparent and H2O-free α-GaPO4 crystals. Then,
we could assume that both the X - and the Y -plates studied in
this work had a negligible OH-group content. Compared with
hydrothermally grown GaPO4 crystals, the strong reduction of
the OH concentration in the lattice of flux-grown α-GaPO4 is
believed to have induced an improvement of the lattice rigidity
and, consequently, an increase of the wave velocities. This
would be the main effect acting for the higher values of the
elastic constants measured with our GaPO4 samples, table 2.
A similar augmentation of the elastic constants was already
observed with berlinite AlPO4 when the OH concentration
was reduced by modification of the hydrothermal growth
conditions [27].

This was the first attempt at elastic constant measurements
at room temperature of α-GaPO4 single crystals grown by
the flux method at high temperature. Nevertheless, the
very interesting elastic behavior of these crystals needs to
be confirmed by other measurements. Such a confirmation
should particularly be concerned with the value found for
C11, which is the only constant found slightly lower for the
flux-grown material than for the hydrothermal crystals. It
should be noticed that this constant corresponds to frequency
measurements made for an extensional mode which tends to
degenerate into several others in practical devices. This leads
to a larger uncertainty in the frequency measurements and
consequently in the constant value (table 2).

More generally, due to the small ratio of the lateral
dimensions of our plates to their thickness, a more or less
important part of the moderate accuracy obtained in several
measurements may take its origin in the difference between
the actual mode shape existing in the plates and the plane
wave model. This point has to be examined with larger
samples (centimeter size) which will, anyway, give a much
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better accuracy in the frequency measurements due to a lower
impedance level and an equal or slightly lower resistance.

5. Conclusion

Clear and transparent GaPO4 single crystals of the α-quartz
structure were grown using the high temperature solution
growth technique by cooling from 950 to 600 ◦C. A
first approach of their elastic constant determination was
undertaken using the resonance of the piezoelectric thickness
modes that can be excited in plane and parallel X - and Y -
oriented plates by a thickness or a lateral electric field. It
seems that the negligible OH impurity in the as-grown crystals
induces a larger stiffness of the lattice, as shown by the values
of the elastic constants. However, these results should be
regarded as preliminary indications for pure α-GaPO4. The
opposite tendency observed for the C11 elastic constant, the
fact that we were not in the best experimental conditions to
use the one-dimensional model, and several other hypotheses,
lead us to conclude that extra elastic constant measurements
are necessary to confirm this promising elastic behavior found
for flux-grown α-GaPO4 crystals.
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